首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9258篇
  免费   1515篇
  国内免费   1390篇
化学   5226篇
晶体学   148篇
力学   1527篇
综合类   135篇
数学   252篇
物理学   4875篇
  2024年   13篇
  2023年   75篇
  2022年   178篇
  2021年   187篇
  2020年   237篇
  2019年   227篇
  2018年   186篇
  2017年   262篇
  2016年   331篇
  2015年   393篇
  2014年   405篇
  2013年   1146篇
  2012年   578篇
  2011年   648篇
  2010年   460篇
  2009年   525篇
  2008年   501篇
  2007年   573篇
  2006年   523篇
  2005年   489篇
  2004年   468篇
  2003年   393篇
  2002年   375篇
  2001年   309篇
  2000年   243篇
  1999年   210篇
  1998年   245篇
  1997年   240篇
  1996年   200篇
  1995年   238篇
  1994年   192篇
  1993年   194篇
  1992年   186篇
  1991年   141篇
  1990年   127篇
  1989年   94篇
  1988年   100篇
  1987年   47篇
  1986年   38篇
  1985年   33篇
  1984年   27篇
  1983年   7篇
  1982年   25篇
  1981年   21篇
  1980年   11篇
  1979年   22篇
  1978年   7篇
  1976年   4篇
  1973年   10篇
  1972年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
The iron containing langasite family compound Ba3Ta57Fe3Si2O14 was studied at high pressure up to 30 GPa at room temperature by means of in situ X-ray diffraction, Raman and Mössbauer spectroscopies in diamond anvil cell. Two structural transitions at pressures ∼5 and ∼20 GPa are observed. At ∼5 GPa, the low-pressure trigonal P321 phase undergoes phase transition to the most likely P3 structure as manifested by slight increase in the c/a ratio and by anomalies of the Mössbauer and Raman spectra parameters. At ∼20 GPa, the first order phase transition to monoclinic structure occurred with a drop of unit cell volume by 9%. The appearance of the ferroelectric state at such transitions is discussed in connection with the multiferroic properties.  相似文献   
92.
The diuranium(III) compound [UN′′2]2(μ‐η66‐C6H6) (N′′=N(SiMe3)2) has been studied using variable, high‐pressure single‐crystal X‐ray crystallography, and density functional theory . In this compound, the low‐coordinate metal cations are coupled through π‐ and δ‐symmetric arene overlap and show close metal? CH contacts with the flexible methyl CH groups of the sterically encumbered amido ligands. The metal–metal separation decreases with increasing pressure, but the most significant structural changes are to the close contacts between ligand CH bonds and the U centers. Although the interatomic distances are suggestive of agostic‐type interactions between the U and ligand peripheral CH groups, QTAIM (quantum theory of atoms‐in‐molecules) computational analysis suggests that there is no such interaction at ambient pressure. However, QTAIM and NBO analyses indicate that the interaction becomes agostic at 3.2 GPa.  相似文献   
93.
The PLANE WAVE pseudo-potential method within density functional theory (DFT) has been used to investigate the structural, elastic, electronic and optical properties of XCaF3 (X = K and Rb) insulating. The studied compounds show a weak resistance to shear deformation compared to the resistance to the unidirectional compression. KCaF3 and RbCaF3 are considered ductile. The elastic constants and related parameters were predicted. The stiffness is more important in KCaF3, whereas, the lateral expansion is more important in RbCaF3. KCaF3 and RbCaF3 have R- Г indirect band gap. The main peaks in the imaginary part of the dielectric function correspond to the transition from the occupied state Fp to the unoccupied states Ca: s or K, Rb: p. At lower energies, KCaF3 and RbCaF3 show the same optical properties. Under pressure effect, the peaks of imaginary part of dielectric function were shifted toward high energy.  相似文献   
94.
Illumination sources based on phosphor‐converted light emitting diode (pcLED) technology are nowadays of great relevance. In particular, illumination‐grade pcLEDs are attracting increasing attention. Regarding this, the application of a single warm‐white‐emitting phosphor could be of great advantage. Herein, we report the synthesis of a novel nitridophosphate zeolite Ba3P5N10Br:Eu2+. Upon excitation by near‐UV light, natural‐white‐light luminescence was detected. The synthesis of Ba3P5N10Br:Eu2+ was carried out using the multianvil technique. The crystal structure of Ba3P5N10Br:Eu2+ was solved and refined by single‐crystal X‐ray diffraction analysis and confirmed by Rietveld refinement and FTIR spectroscopy. Furthermore, spectroscopic luminescence measurements were performed. Through the synthesis of Ba3P5N10Br:Eu2+, we have shown the great potential of nitridophosphate zeolites to serve as high‐performance luminescence materials.  相似文献   
95.
Of particular interest is a peculiar motion of guest atoms or ions confined to nanospace in cage compounds, called rattling. While rattling provides unexplored physical properties through the guest–host interactions, it has only been observed in a very limited class of materials. Herein, we introduce an A‐site‐ordered quadruple perovskite, CuCu3V4O12, as a new family of cage compounds. This novel AA′3B4O12‐type perovskite has been obtained by a high‐pressure synthesis technique and structurally characterized to have cubic Im$\bar 3$ symmetry with an ionic model of Cu2+Cu2+3V4+4O12. The thermal displacement parameter of the A‐site Cu2+ ion is as large as Uiso≈0.045 Å2 at 300 K, indicating its large‐amplitude thermal oscillations in the oversized icosahedral cages. Remarkably, the presence of localized phonon modes associated with rattling of the A‐site Cu2+ ion manifests itself in the low‐temperature specific heat data. This work sheds new light on the structure–property relations in perovskites.  相似文献   
96.
Alkaline‐earth (most prominently barium) complexes of the type [Ae{N(SiMe3)2}2?(THF)x] and [{N^N}Ae{N(SiMe3)2}?(THF)x] are very active and productive precatalysts (TON=396, TOF up to 3600 h?1; Ca相似文献   
97.
An alternative approach to loading metal organic frameworks with gas molecules at high (kbar) pressures is reported. The technique, which uses liquefied gases as pressure transmitting media within a diamond anvil cell along with a single‐crystal of a porous metal–organic framework, is demonstrated to have considerable advantages over other gas‐loading methods when investigating host–guest interactions. Specifically, loading the metal–organic framework Sc2BDC3 with liquefied CO2 at 2 kbar reveals the presence of three adsorption sites, one previously unreported, and resolves previous inconsistencies between structural data and adsorption isotherms. A further study with supercritical CH4 at 3–25 kbar demonstrates hyperfilling of the Sc2BDC3 and two high‐pressure displacive and reversible phase transitions are induced as the filled MOF adapts to reduce the volume of the system.  相似文献   
98.
The apparently universal 1‐bond → 2‐mode percolation behavior in the Raman spectra of zincblende semiconductor alloys is generally observed for the short bond only, and not for the long one. In this work we perform a combined high‐pressure‐backward/near‐forward Raman study of the leading percolation‐type (Zn,Be)Se alloy (~50 at.% Be), which exhibits a distinct percolation doublet in the spectral range of its short Be―Se bond, in search of a Zn―Se analogue. The high‐pressure‐backward insight is not conclusive per se, but clarifies the perspective behind the near‐forward Raman study. The latter reveals an unique Zn―Se phonon–polariton. Its fair contour modeling depending on the scattering angle is achieved within the linear dielectric approach, based on ellipsometry measurement of the ZnBeSe refractive index. Somewhat surprisingly this reveals that the phonon–polariton in question is a ‘fractional’ one in that it carries only half of the available Zn―Se oscillator strength, as ideally expected in case of a BeSe‐like bimodal Raman behavior of the long Zn―Se bond. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
99.
Interpenetrating metal organic frameworks are interesting functional materials exhibiting exceptional framework properties. Uptake or exclusion of guest molecules can induce sliding in the framework making it porous or non‐porous. To understand this dynamic nature and how framework interaction changes during sliding, metal organic framework (MOF) 508 {Zn(BDC)( 4,4′‐Bipy)0.5 · DMF(H2O)0.5} was selected for study. We have investigated structural transformation in MOF‐508 under variable conditions of temperature, pressure and gas loading using Raman spectroscopy and substantiated it with IR studies and density functional theory (DFT) calculations. Conformational changes in the organic linkers leading to the sliding of the framework result in changes in Raman spectra. These changes in the organic linkers are measured as a function of high pressure and low temperature, suggesting that the dynamism in MOF‐508 framework is driven by ligand conformation change and inter‐linker interactions. The presence of Raman signatures of adsorbed CO2 and its librational mode at 149 cm−1 suggests cooperative adsorption of CO2 in the MOF‐508 framework, which is also confirmed from DFT calculations that give a binding energy of 34 kJ/mol. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
100.
The vibrational and structural properties of Pb(Fe0.5Nb0.5)O3 have been investigated using Raman spectroscopy up to 40 GPa at 300 K and from 300 to 415 K at selected pressures. The measurements reveal three phase transitions, at 5.5, 8.7, and 24 GPa at room temperature. The temperature dependences of the spectra indicate transitions at 1.5 GPa, at 335 and 365 K. The results are consistent with the appearance of an intermediate tetragonal P4mm phase between the ferroelectric R3m and paraelectric Pm‐3m phases. A P–T phase diagram is proposed that allows further insight into the magnetoelectric coupling present in this material. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号